Ch 14 Chemical Equilibrium

What is Chemical Equilibrium?

- At equilibrium, the reactant and product concentrations are no longer changing because:

forward rate $=$ reverse rate

- This process is called dynamic equilibrium because the forward and reverse reactions have not stopped occurring. They are both still occurring simultaneously at equilibrium.
- Equilibrium requires a reversible reaction system, such as catalytic methanation where the forward reaction produces methane from carbon monoxide.

$$
\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

- The reverse reaction is called steam reforming, which produces H_{2} and CO from methane and steam. The hydrogen and carbon monoxide products are typically used as manufacturing feedstocks or for fuel.

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

- Symbolize both sides reacting simultaneously with a reversible double arrow.

$$
\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

- Conditions of the reaction can be changed to favor one side or the other.

Equilibrium Table

- If all initial concentrations are known, and at least one equilibrium concentration can be measured, then remaining concentrations can be determined from stoichiometry.
- The starting concentrations and the change in concentrations are combined algebraically to find the equilibrium concentrations for each reactant and product.

Example 14.01 Create an Equilibrium Table to Determine Concentrations at Equilibrium

	$\mathrm{CO}+$	$3 \mathrm{H}_{2} \rightleftharpoons$	CH_{4}	+	$\mathrm{H}_{2} \mathrm{O}$
Initial (starting)	0.1500 M	0.2500 M	0		0
Change (with variable)	-x	-3 x	+x		+x
Equilibrium (sum)	$0.1500-\mathrm{x}$	$0.2500-3 \mathrm{x}$	x		x

$$
\begin{array}{lll}
{\left[\mathrm{CH}_{4}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{x}} & =\frac{0.402 \text { moles }}{10.00 \mathrm{~L}} & =0.0402 \mathrm{M} \\
{[\mathrm{CO}]=0.1500-\mathrm{x}} & =0.1500-0.0402 & =0.1098 \mathrm{M} \\
{\left[\mathrm{H}_{2}\right]=0.2500-3 \mathrm{x}} & =0.2500-3(0.0402) & =0.1294 \mathrm{M}
\end{array}
$$

Equilibrium Constant Expression

- If reversible reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$ is at equilibrium, then the concentrations are no longer changing.
- So the relationship between concentrations can be defined by an expression, which is obtained by multiplying product concentrations, dividing reactant concentrations, and raising each concentration to its stoichiometric coefficient as its exponent.

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

Example 14.02 Write Equilibrium Constant Expressions

- For $\mathrm{CO}+3 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$, the expression is

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}
$$

- K_{c} for the reverse reaction, $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}+3 \mathrm{H}_{2}$, is the reciprocal: $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
- If we double the reaction coefficients, $2 \mathrm{CO}+6 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$,
then we double the exponents:

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{CO}]^{2}\left[\mathrm{H}_{2}\right]^{6}}
$$

Law of Mass Action

- The numerical value of the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is constant as long as temperature is held constant.
- The kinetics argument for this law is that K_{c} is constant because it is related to rate constants for elementary reactions, which have rate laws that are obtained from stoichiometry.
- For $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$ at equilibrium, the forward rate equals reverse rate.

$$
\mathrm{k}_{\mathrm{f}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=\mathrm{k}_{\mathrm{r}}\left[\mathrm{NO}_{2}\right]^{2} \quad \text { and } \quad \mathrm{K}_{\mathrm{c}}=\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{r}}=\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]
$$

Since both rate constants $\left(k_{f}\right.$ and $\left.k_{r}\right)$ have constant values, K_{c} must as well.

- Since the rate-determining step for all reaction mechanisms is an elementary reaction, a constant K_{c} is found for all net chemical equations.

The Equilibrium Constant's Value

- The value of the equilibrium constant can be determined from concentration data.
- We can use the data from Example 14.01 on the previous page for catalytic methanation. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.0402 \mathrm{~mol} / \mathrm{L})(0.0402 \mathrm{~mol} / \mathrm{L})}{(0.1098 \mathrm{~mol} / \mathrm{L})(0.1294 \mathrm{~mol} / \mathrm{L})^{3}}=6.80 \mathrm{~L}^{2} / \mathrm{mol}^{2}$ at 1173 K

Ex 14.03 Use an Equilibrium Table to Determine the Value of an Equilibrium Constant (300 K)

	$2 \mathrm{HI}_{(\mathrm{g})}$	$\rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$	$[\mathrm{HI}]_{\mathrm{o}}=\frac{4.97 \mathrm{~mol}}{5.00 \mathrm{~L}}=0.994 \mathrm{M}$	
Initial	0.994	0	0	$\mathrm{x}=\left[\mathrm{I}_{2}\right]_{\text {eqm }}=\frac{1.955 \mathrm{~mol}}{5.00 \mathrm{~L}}=0.391 \mathrm{M}$
Change	-2 x	x	x	$[\mathrm{HI}]_{\text {eqm }}=(0.994-2 \mathrm{x})=0.212 \mathrm{M}$
Equilibrium	$(0.994-2 \mathrm{x})$	x	x	$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{(0.391 \mathrm{M})^{2}}{(0.212 \mathrm{M})^{2}}=3.40$

Equilibrium Constant of Gaseous Reactions using Partial Pressures (K_{p})

- The ideal gas law, $\mathrm{PV}=\mathrm{nRT}$, can be rearranged to $\mathrm{P}=(\mathrm{n} / \mathrm{V}) \times \mathrm{RT}=[\mathrm{mol} / \mathrm{L}] \times \mathrm{RT}$.
- So, equilibrium constants for gases can be expressed using the partial pressures of reactants and products, instead of their molarities.
- We can use partial pressures to get K_{p} at 1173 K for $\mathrm{CO}+3 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \mathbf{K}_{\mathbf{p}}=\frac{\mathbf{P}_{\mathrm{CH} 4} \mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{Co}} \mathbf{P}_{\mathrm{H} 2}^{3}}=\frac{\left(\left[\mathrm{CH}_{4}\right] \mathrm{RT}\right)\left(\left[\mathrm{H}_{2} \mathrm{O}\right] \mathrm{RT}\right)}{([\mathrm{CO}] \mathrm{RT})\left(\left[\mathrm{H}_{2}\right] \mathrm{RT}\right)^{3}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}} \times(\mathrm{RT})^{(1+1-1-3)}=\mathrm{K}_{\mathrm{c}} \times(\mathrm{RT})^{-2} \\
& \mathrm{~K}_{\mathrm{p}}=\left(6.80 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2}}\right) \times\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 1173 \mathrm{~K}\right)^{-2}=7.34 \times 10^{-4} \mathrm{~atm}^{-2}
\end{aligned}
$$

- $\quad \mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathrm{n}}$, where $\Delta \mathbf{n}=$ (sum of product coefficients) - (sum of reactant coefficients). $\Delta \mathrm{n}=(1+1)-(3+1)=-2$ for this reaction, which produces two moles from four moles.

Example 14.04 Find K_{p} for $\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ where $\mathrm{K}_{\mathrm{c}}=2.11 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ at 331 K

- $\quad \mathrm{K}_{\mathrm{p}}=\frac{\mathbf{P}_{\mathrm{PCl} 1} \mathbf{P}_{\mathrm{Cl} 2}}{\mathbf{P}_{\mathrm{PCl} 5}}=\left(\mathrm{K}_{\mathrm{c}}\right)(\mathrm{RT})^{(1+1-1)}=\left(2.11 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{mol} \cdot \mathrm{K}} \times 331 \mathrm{~K}\right)^{(2-1)}$
- $K_{p}=(0.0211 \mathrm{~mol} / \mathrm{L})(27.2 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol})^{1}=0.573 \mathrm{~atm}$

Sum of Chemical Equations

- If a net chemical equation is the sum of other net chemical equations, then the equilibrium constant for the sum reaction is the product of the component equilibrium constants.
$-\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$$
\underline{\mathrm{CH}}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \underline{\mathrm{~S}}_{(\mathrm{g})} \rightleftharpoons \mathrm{CS}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}
$$

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightleftharpoons \mathrm{CS}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

$$
\begin{aligned}
& \mathrm{Kc}_{1}=6.80 \mathrm{~L}^{2} / \mathrm{mol}^{2} \text { at } 1173 \mathrm{~K} \\
& \mathrm{Kc}_{2}=3.6 \mathrm{~mol}^{2} / \mathrm{L}^{2} \text { at } 1173 \mathrm{~K} \\
& \mathrm{Kc}_{3}=\mathrm{Kc}_{1} \times \mathrm{Kc}_{2}=\left(6.80 \mathrm{~L}^{2} / \mathrm{mol}^{2}\right)\left(3.6 \mathrm{~mol}^{2} / \mathrm{L}^{2}\right) \\
& \mathrm{Kc}_{3}=2.4 \times 10^{1}
\end{aligned}
$$

Homogeneous Equilibrium (All substance are contained in a single phase.)

- All reactants and products are in the same phase, contained in a single liquid or gas solution.
- For example, in catalytic methanation, all of the substances are in the same gaseous mixture.
- Homogeneous reactions can also occur completely dissolved in a single aqueous solution, such as in the formation of a complex ion: $\quad \mathrm{Cu}^{2+}{ }_{(\text {aq })}+4 \mathrm{NH}_{3(\text { aq })} \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}{ }_{(\text {aq })}$

Heterogeneous Equilibrium (The reaction involves more than one phase.)

- Solids have surface concentrations that are small, difficult to measure, and are approximately constant.
- Pure liquids also have constant concentrations: $\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}\right]=\frac{1000 \frac{\mathrm{~g}}{\mathrm{~L}}}{18.02 \frac{\mathrm{~g}}{\mathrm{~mol}}}=55.5 \mathrm{M}$
- Equilibrium is not affected by the pure solids and liquids as long as they are simply present.
- Omit solids and pure liquids from $\mathbf{K}_{\mathbf{c}}$ to simplify the expression by leaving out constants.
- For $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2(\mathrm{~g})}$, the expression simplifies to $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2(\mathrm{~g})}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{4}}$
- Similarly, $\mathrm{Ag}_{2} \mathrm{CO}_{3(\mathrm{~s})} \rightleftharpoons 2 \mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{-2}{ }_{(\mathrm{aq})}$ has $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}\right]^{2}\left[\mathrm{CO}_{3}{ }^{-2}{ }_{(\mathrm{aq})}\right]$
- Also, $\mathrm{HNO}_{2(\text { aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons \mathrm{NO}_{2}{ }^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})}$ has $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})}\right]\left[\mathrm{NO}_{2}{ }^{-1}{ }_{(\mathrm{aq})}\right]}{\left[\mathrm{HNO}_{2(\mathrm{aq})}\right]}$

The equilibrium constant can be used to answer important questions about chemical reactions.

1) The magnitude of the constant's value tells us whether reactants or products are favored.
2) Kc can predict direction of reaction for a mixture that is not at equilibrium.
3) Kc can be used to calculate equilibrium concentrations using an equilibrium table.

Qualitatively Interpreting the Magnitude of the Equilibrium Constant

- Large value means products (in numerator) are favored ($\mathrm{K}_{\mathrm{c}} \gg 1$)
- Small value means reactants (in denominator) are favored ($\mathrm{K}_{\mathrm{c}} \ll 1$)
- If $\mathrm{Kc} \approx 1$, then equilibrium mixture contains both reactants and products
- $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ has $\mathrm{K}_{\mathrm{c}}=2.7 \times 10^{8}$ at 300 K , so $\mathrm{K}_{\mathrm{c}} \gg 1$ (large).

If $\left[\mathrm{N}_{2}\right]=\left[\mathrm{H}_{2}\right]=0.01 \mathrm{M}$ at equilibrium, then $\left[\mathrm{NH}_{3}\right]=1.6 \mathrm{M}$ (product is favored).
The product's equilibrium concentration is much greater than that of the reactants.

Predicting the Direction of Reaction for a Mixture that is Not Necessarily at Equilibrium

- The direction can be predicted using the reaction quotient ($\mathbf{Q}_{\mathbf{c}}$), which has exactly the same form as K_{c}, but uses interim (not necessarily equilibrium) concentrations.
- $Q_{c}=\frac{[C]_{i}^{c}[D]_{i}^{d}}{[A]_{i}^{d}[B]_{i}^{b}} \quad$ where " i " stands for interim
- If $\mathbf{Q}_{\mathbf{c}}>\mathbf{K}_{\mathbf{c}}$, the reaction will go to the left, towards the reactants.

Shifting left decreases the numerator and increases the denominator, so that Q_{c} decreases.

- If $\mathbf{Q}_{\mathbf{c}}<\mathbf{K}_{\mathbf{c}}$, the reaction will go to the right, towards the products.

Shifting right increases the numerator and decreases the denominator, so that Q_{c} increases.

- If $\mathbf{Q}_{\mathbf{c}}=\mathbf{K}_{\mathbf{c}}$, then the reaction is at equilibrium. No shift occurs.

Example 14.05 Determine Qc and Compare with Kc (4.1 at 600 K)

- $Q_{c}=\frac{\left[\mathrm{NH}_{3}\right]_{\mathrm{i}}^{2}}{\left[\mathrm{~N}_{2}\right]_{\mathrm{i}}\left[\mathrm{H}_{2}\right]_{\mathrm{i}}^{3}}=\frac{(0.0100)^{2}}{(0.00800)(0.100)^{3}}=12.5$
- $Q_{c}>K_{c} \quad$ The reaction will go left (reverse) until $Q_{c}=K_{c}$.

Equilibrium Concentrations can be determined by the following steps.

1) Set up an equilibrium table with the three lines to represent the concentrations:
initial, change (including the variable), and equilibrium (as their sum).
2) Substitute the equilibrium line (including the variable) into the Kcexpression.
3) Use the value for Kc to solve for the variable, and then find the concentrations.

Example 14.07 Solve for Equilibrium Concentrations with a Perfect Square

- For the reaction $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$, we have $\left[\mathrm{CO}_{(\mathrm{g})}\right]_{0}=\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]_{0}=0.0250 \mathrm{M}$
- The equilibrium table is similar to Example 14.01.

The result here gives us: $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2(\mathrm{~g})}\right]\left[\mathrm{H}_{2(\mathrm{~g})}\right]}{\left[\mathrm{CO}_{(\mathrm{g})}\right)\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]}=\frac{(\mathrm{x})(\mathrm{x})}{(0.0250-\mathrm{x})(0.0250-\mathrm{x})}=\frac{\mathrm{x}^{2}}{(0.0250-\mathrm{x})^{2}}$

- Solve for x by taking the square root of the equation: $\quad \frac{x}{(0.0250-x)}= \pm \sqrt{K_{c}}$
- The square root of the equation can then be rearranged: $\quad 1 \mathrm{x}=(0.0250-\mathrm{x})\left(\pm \sqrt{\mathrm{K}_{\mathrm{c}}}\right)$
- Then, place the terms with x on the same side: $\quad\left[1+\left(\pm \sqrt{\mathrm{K}_{\mathrm{c}}}\right)\right](\mathrm{x})=(0.0250)\left(\pm \sqrt{\mathrm{K}_{\mathrm{c}}}\right)$
- Finally, solve for x :

$$
\begin{gathered}
\mathrm{x}=\frac{(0.0250)\left(\pm \sqrt{\mathrm{K}_{\mathrm{c}}}\right)}{1+\left(\pm \sqrt{\mathrm{K}_{\mathrm{c}}}\right)} \\
{\left[\mathrm{CO}_{2(\mathrm{~g})}\right]=\left[\mathrm{H}_{2(\mathrm{~g})}\right]=\mathrm{x}=0.0110 \mathrm{M}} \\
{\left[\mathrm{CO}_{(\mathrm{g})}\right]=\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]=0.0250-\mathrm{x}=0.0140 \mathrm{M}}
\end{gathered}
$$

Solving Equilibrium Tables that do Not have Perfect Squares

- If the reactant concentrations in Example 14.07 were not equal, then the K_{c} expression would not be a perfect square.
- Examples 13.9 and 13.10 in Open Stax also have expressions that are not perfect squares.
- In those cases, the expressions can be rearranged to create a binomial: $a^{2}+b x+c=0$
- The binomial can be solved with the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Effect of Changing Conditions on Equilibrium Concentrations

- The equilibrium concentrations can be changed by:
- adding or removing either reactants or products
- changing partial pressures $\left(\mathrm{P}_{\mathrm{A}}\right)$ of reactants and products by changing the volume
- changing the temperature
- The effect can be predicted from LeChatelier's principle of dynamic equilibrium.

When a system at chemical eqm is disturbed by a change in [concentration], P_{A}, or T, then the equilibrium concentrations shift to counteract that change.

Adding and Removing Substances Involved in a Reaction

- If you remove or add a substance involved in the reaction, the equilibrium constant will not change, but Q_{c} does.
- The reaction will proceed to restore the balance, until $Q_{c}=K_{c}$ again.
- If reactant is added or product is removed, then $\mathbf{Q}_{\mathbf{c}}<\mathbf{K}_{\mathbf{c}}$ and the eqm shifts right (forward).
- If a reactant is removed or a product is added, then $\mathbf{Q}_{\mathbf{c}}>\mathbf{K}_{\mathbf{c}}$ and the eqm shifts left (reverse).

Example 14.09 Shifting Equilibrium by Changing Concentrations

- $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HBr}_{(\mathrm{g})}$ is initially at equilibrium, and then $\mathrm{H}_{2(\mathrm{~g})}$ reactant is removed.
- Removing a reactant will increase the value of Q_{c}, so that $\mathrm{Qc}>\mathrm{Kc}$.
- The equilibrium shifts left, the reaction goes in reverse, and more $\mathrm{H}_{2(\mathrm{~g})}$ is created.

Changing Partial Pressures Affects Equilibrium Concentrations

- Reactions involving gases can shift their equilibrium as a result of changes to pressure and volume. Suppose the partial pressures of the gases are all increased proportionally by decreasing the volume. The reaction will counteract the change by shifting the equilibrium towards fewer moles of gas. This occurs because, as moles (n) decrease, the pressure does also, which counteracts the change.
- Also, increasing the volume will shift the equilibrium towards more moles of gas.
- Reducing partial pressures shifts the equilibrium to the right for $\mathrm{N}_{2} \underline{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$.

Example 14.10 Determine Shift Direction when Partial Pressures of All Gases are Increased

- $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \quad$ Fewer moles of gas is towards the right (forward).
- $\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad$ Fewer moles of gas is towards the left (reverse).
- $\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2(\mathrm{~g})} \quad$ No shift at all because each side has one mole of gas.

Changing Partial Pressures Affects the Reaction Quotient $\left(\mathrm{Q}_{\mathrm{c}}\right)$

- If volume (V) is reduced by half, then each concentration $(\mathrm{n} / \mathrm{V})$ doubles.

If we double concentrations for $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$, the result is:

$$
\mathrm{Q}_{\mathrm{c}}=\frac{\left(2\left[\mathrm{CH}_{4}\right]_{0}\right)\left(2\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}\right)}{\left(2[\mathrm{CO}]_{0}\right)\left(2\left[\mathrm{H}_{2}\right]_{0}\right)^{3}}=\frac{4}{16} \times \frac{\left[\mathrm{CH}_{4}\right]_{0}\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}}{[\mathrm{CO}]_{0}\left[\mathrm{H}_{2}\right]_{0}{ }^{3}}=\frac{1}{4} \times \mathrm{K}_{\mathrm{c}}
$$

So, $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$ and the reaction goes to the right, where there are fewer moles of gas.

- Adding a nonparticipant (like He), though, only changes the total moles and total pressure.

The nonparticipant does not change any other substance's partial pressure or concentration.
So, the Q_{c} and the equilibrium concentrations will not change as a result.

Temperature affects Equilibrium Concentrations by Changing $\mathbf{K}_{\mathbf{c}}$

- For an endothermic reaction $(\Delta \mathrm{H}>0)$, more heat favors products. Increasing T will increase Kc and make $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$, so that equilibrium shifts right (forward).

$$
\text { Reactant }+ \text { Heat } \rightleftharpoons \text { Product }
$$

Adding heat (by increasing T) to an endothermic reaction is like adding a reactant.

- For an exothermic reaction $(\Delta \mathrm{H}<0)$, less heat favors products.

Decreasing T will increase Kc and make $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$, so that equilibrium shifts right (forward).

$$
\text { Reactant } \rightleftharpoons \text { Product }+ \text { Heat }
$$

Removing heat (by decreasing T) from an exothermic reaction is like removing product.

- Increasing T, by comparison, shifts the exothermic reaction to the left (reverse).

Kc decreases as T increases.

Optimizing an Exothermic Reaction

- For $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$, we have $\Delta \mathrm{H}=-206 \frac{\mathrm{~kJ}}{\text { mol Co }}$.
- Increase T just enough to increase rate constant and the reaction rate, but not enough to reduce Kc significantly for the exothermic reaction. Somewhere between $230{ }^{\circ} \mathrm{C}$ and $450{ }^{\circ} \mathrm{C}$ is ideal.
- Also, increase the partial pressures of reactants (P_{CO} and $\mathrm{P}_{\mathrm{H} 2}$) moderately in order to shift the equilibrium to the right, towards fewer moles of gas.

Catalysts

- Catalysts are not part of the K_{c} expression.
- Catalysts do not affect equilibrium compositions.
- However, they decrease the time needed to reach equilibrium.
- For $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$, we have $\mathrm{K}_{\mathrm{c}}=7.9 \times 10^{4} \mathrm{~L} / \mathrm{mol}$ at $527^{\circ} \mathrm{C}$.

The reaction has a very large K_{c} and is used industrially to produce $\mathrm{H}_{2} \mathrm{SO}_{4}$ from sulfur.
However, the uncatalyzed combustion of sulfur produces mostly $\mathrm{SO}_{2(\mathrm{~g})}$ and very little $\mathrm{SO}_{3(\mathrm{~g})}$.
The uncatalyzed conversion into $\mathrm{SO}_{3(\mathrm{~g})}$ is very slow, and it doesn't reach equilibrium.
$\mathrm{Pt}_{(\mathrm{s})}$ and $\mathrm{V}_{2} \mathrm{O}_{5(\mathrm{~s})}$ increase the rate for creating SO_{3} so that the equilibrium can be reached.

- For $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$, we have $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{-25}$ at $100{ }^{\circ} \mathrm{C}$

This reaction has a very small K_{c} at $100{ }^{\circ} \mathrm{C}$.
Catalysts will not help at low temperatures in this reaction because catalysts do not change equilibrium concentrations.
K_{c} increases with T , and higher temperatures have higher product concentrations at eqm.
So, air can be used with a catalyst at $2000{ }^{\circ} \mathrm{C}$ to form $0.4 \% \mathrm{NO}_{(\mathrm{g})}$ in the air mixture.

